30 research outputs found

    Contextual modulation of primary visual cortex by auditory signals

    Get PDF
    Early visual cortex receives non-feedforward input from lateral and top-down connections (Muckli & Petro 2013 Curr. Opin. Neurobiol. 23, 195–201. (doi:10.1016/j.conb.2013.01.020)), including long-range projections from auditory areas. Early visual cortex can code for high-level auditory information, with neural patterns representing natural sound stimulation (Vetter et al. 2014 Curr. Biol. 24, 1256–1262. (doi:10.1016/j.cub.2014.04.020)). We discuss a number of questions arising from these findings. What is the adaptive function of bimodal representations in visual cortex? What type of information projects from auditory to visual cortex? What are the anatomical constraints of auditory information in V1, for example, periphery versus fovea, superficial versus deep cortical layers? Is there a putative neural mechanism we can infer from human neuroimaging data and recent theoretical accounts of cortex? We also present data showing we can read out high-level auditory information from the activation patterns of early visual cortex even when visual cortex receives simple visual stimulation, suggesting independent channels for visual and auditory signals in V1. We speculate which cellular mechanisms allow V1 to be contextually modulated by auditory input to facilitate perception, cognition and behaviour. Beyond cortical feedback that facilitates perception, we argue that there is also feedback serving counterfactual processing during imagery, dreaming and mind wandering, which is not relevant for immediate perception but for behaviour and cognition over a longer time frame. This article is part of the themed issue ‘Auditory and visual scene analysis’

    Characterising activity and diet compositions for dementia prevention: protocol for the ACTIVate prospective longitudinal cohort study

    Get PDF
    Introduction Approximately 40% of late-life dementia may be prevented by addressing modifiable risk factors, including physical activity and diet. Yet, it is currently unknown how multiple lifestyle factors interact to influence cognition. The ACTIVate Study aims to (1) explore associations between 24-hour time-use and diet compositions with changes in cognition and brain function; and (2) identify duration of time-use behaviours and the dietary compositions to optimise cognition and brain function.Methods and analysis This 3-year prospective longitudinal cohort study will recruit 448 adults aged 60-70 years across Adelaide and Newcastle, Australia. Time-use data will be collected through wrist-worn activity monitors and the Multimedia Activity Recall for Children and Adults. Dietary intake will be assessed using the Australian Eating Survey food frequency questionnaire. The primary outcome will be cognitive function, assessed using the Addenbrooke's Cognitive Examination-III. Secondary outcomes include structural and functional brain measures using MRI, cerebral arterial pulse measured with diffuse optical tomography, neuroplasticity using simultaneous transcranial magnetic stimulation and electroencephalography, and electrophysiological markers of cognitive control using event-related potential and time frequency analyses. Compositional data analysis, testing for interactions between time point and compositions, will assess longitudinal associations between dependent (cognition, brain function) and independent (time-use and diet compositions) variables. Conclusions The ACTIVate Study will be the first to examine associations between time-use and diet compositions, cognition and brain function. Our findings will inform new avenues for multidomain interventions that may more effectively account for the co-dependence between activity and diet behaviours for dementia prevention. Ethics and dissemination Ethics approval has been obtained from the University of South Australia's Human Research Ethics committee (202639). Findings will be disseminated through peer-reviewed manuscripts, conference presentations, targeted media releases and community engagement events. Trial registration number >Australia New Zealand Clinical Trials Registry (ACTRN12619001659190).Ashleigh E Smith, Alexandra T Wade, Timothy Olds, Dorothea Dumuid, Michael J Breakspear, Kate Laver ... et al

    Overview of the JET results in support to ITER

    Get PDF
    corecore